ABSTRACT Trace mineral concentrations of annual cool season pasture forages grazed by growing beef cattle during late fall-winter-spring grazing season were evaluated during two experimental cool season grazing studies, each lasting two years at the North Florida Research and Education Center (NFREC), Marianna, Florida. Eight 1.32 ha fenced pastures or paddocks were divided into two groups of pasture land preparation/planting methods, four pastures for the sod seeding treatments (SS) and four for the prepared seedbed treatments (PS). Two different pasture forages, small grains, (rye/oats mix) with or without ryegrass for the first two years (Study 1); and oats with ryegrass or ryegrass only for the last two years (Study 2) were planted in these pasture lands. Each of the four forage, type, and cultivation combination treatments was assigned to two pastures each year, thereby giving two replicates per pasture treatment per year. Forage samples were collected at the start of pasture grazing and twice monthly thereafter until the end of grazing season, pooled by month, and analyzed for copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), and selenium (Se). Liver biopsies and blood plasma samples were collected from the tester cattle only during the spring of year two of Study 2. Liver was analyzed for Cu, Fe, Mn, Co, Mo, and Se and plasma for Cu, Fe, Zn, and Se. Forage trace mineral concentrations were found to differ by month in Cu (P < 0.01), Fe and Zn (P < 0.0001) in both studies, and with Mn (P < 0.0001) in Study 2 only. Pasture forage type effects on Cu (P < 0.05), Fe and Zn (P < 0.01), and Se (P < 0.05) and forage type by month interactions on Cu and Mn (P < 0.0001), and Zn (P < 0.05) were observed in Study 2. Forage concentrations of Cu, Zn, Mn, and Mo in Study 1 and Mn, Mo, and Se in Study 2 were affected (P < 0.05) by pasture land preparation/planting methods in that these minerals were found to be lower from forages of sod-seeded treatments than from those of prepared seedbed treatments. Forage Cu concentrations were lower than the minimum requirements (10 ppm, DM) for beef cattle among months in both studies. Oats-ryegrass pastures of Study 2 had surprisingly low Fe concentrations (P < 0.01) in all months of the winter-spring grazing season. Cobalt, Mn, Mo, and Se did not vary much month to month during the winter-spring grazing months. All mean forage Se concentrations were lower than the requirements (0.10 ppm, DM) for grazing beef cattle. There were no differences (P > 0.05) in mean Se values between the two studies. Liver Cu, Fe, Co, and Se concentrations were sufficient to indicate adequate status of these minerals in tester animals from both forage types. Liver concentrations of Mn and Mo were slightly low, indicating a low status or these minerals. Plasma concentrations of Cu, Fe, Se, and Zn were all above the recommended concentrations for beef cattle. In conclusion, trace minerals deficient in North Florida during the cool season were Cu, Co, and Se, and a special consideration should be given to include adequate amounts while supplementing the mineral mixtures to growing beef cattle since forage samples reflected deficient concentrations of these minerals.
Read full abstract