BackgroundPassion fruit (Passiflora edulis [Sims]) is an important economic fruit crop in Kenya, grown for domestic, regional and international markets. However, passion fruit production is constrained by both biotic and abiotic stresses. Passion fruit woodiness disease (PWD) complex is the most injurious viral disease responsible for yield losses of up to 100%. In East Africa, it is caused by potyviruses. The most effective way to manage PWD is by using resistant cultivars. The objectives of this study were to determine the occurrence of passion fruit woodiness disease in selected counties at the Coastal lowlands of Kenya and screen farmer preferred passion fruit genotypes for resistance to PWD.ResultsIn the present study, it was established that all surveyed farms in Kwale and Kilifi counties displayed passion fruit woodiness virus disease symptoms. The highest disease incidence of 59.16% and 51.43% was observed at Kilifi and Kwale counties, respectively. A significant difference (p < 0.05) in symptom severity was observed within the tested genotypes with purple and banana passion fruits having the highest and lowest AUDPC values, respectively, both under greenhouse and field conditions. ACP ELISA assays using universal potyvirus antiserum (Agdia Inc., Elkhat, IN) confirmed that the observed characteristic symptoms of woodiness disease were as a result of potyvirus infection.ConclusionsThe findings herein indicate that PWD is widespread in both Kilifi and Kwale counties with low to moderate disease incidence and severity. The observed prevalence, incidence and severity levels of PWD in Kwale and Kilifi counties could be aggravated by poor management practices such as non-sterilization of pruning tools, intercropping with target crops and crop rotation with the same target crops. Response of passion fruit genotypes to woodiness viruses was genotype dependent. There is need to sensitize farmers on the cause and spread of PWD and management strategies in order to increase production and enhance the quality of fruits.
Read full abstract