This study experimentally investigated the transport characteristics of flaky, fibrous and streaky biomass particles in a fluidization tube. The movement and distribution of these non-spherical biomass particles in different sections of the fluidization tube were visualized and analyzed by using a Particle Tracking Velocimetry measuring approach. The method for calculating the solidity rate distribution of particles in the fluidization tube was also developed. Furthermore, the distribution patterns of non-spherical biomass particles with three different morphologies in the near-wall region of the fluidization tube were significantly analyzed. It could be observed that the area of the non-spherical biomass particles in the near-wall region exhibited an ’M’ shape. Three empirical formulas for predicting the maximum area of non-spherical biomass particle clusters in the fluidization tube were firstly proposed. Among the three prediction formulas, the correlation coefficients are 0.7142, 0.8797, and 0.9567, respectively.
Read full abstract