Machinability is important in engineering applications, especially in the current micro-electronics industry. Most ceramic components have complex shapes and hence require machining generally with diamond tools, which incurs a high production cost. Recently, h-BN-containing machinable ceramics have been developed, but these materials are very expensive due to the high raw materials and production costs. Therefore, the development of low-cost machinable ceramics is necessary. In this study, inexpensive Al₂TiO 5 was studied as a replacement for h-BN. Al₂O₃, TiO₂ and partially stabilized ZrO₂(PSZ) powders were mixed with various mole ratios and were sintered at 1500℃ for 1 h. The density, hardness and strength were then measured. The phase analysis and microstructures were observed by XRD and SEM, respectively. The machinability of each specimen was tested by micro-hole machining. The results of this research showed that the produced composites could be used as low-cost machinable ceramics.
Read full abstract