The failure rate and operating cost of the C-B (chiller-gas boiler) system, which has been in use for a long time, are increasing year by year, but there is a lack of reasonable programs and effective measures on how to retrofit the C-B system. In order to explore the prospect of ground-source heat pumps applied to the retrofit of C-B systems in HSCW (hot summer and cold winter) zone, this study designed a G-C-B (GSHP-Chiller-Boiler) system in a partial retrofit context and constructed a TRNSYS numerical simulation model of the retrofit system. Secondly, the performance and energy efficiency of the system is analyzed as well as different control strategies for the ground source heat pump cooling tower are discussed. Finally, the energy conversion efficiency of the chiller is compared based on the energy flow of the system. Studies have shown that the G-C-B system can achieve a seasonal performance factor of 5.3 during the cooling season and 4.1 during the heating season. Compared to the existing C-B system, year-round electricity consumption was reduced by 21 %, gas consumption by 92 %, and combined energy demand by 49.6 %. With the addition of GSHP, the energy conversion efficiency of the chiller has also increased by 21 %. The soil temperature of the G-C-B system increased by less than 0.5 °C after ten years of continuous operation. This paper can provide a valuable theoretical basis for the energy form modification of the C-B system in the HSCW zone.
Read full abstract