Animal-free new approach methods promote chemical assessments based on the comparison between in vitro bioactivity and human internal concentrations, which necessitates a dependable knowledge of human oral bioavailability, i.e., the fraction of an orally ingested chemical that escapes from presystemic ("first-pass") metabolic processes and eventually enters systemic circulation. Using a physiologically based toxicokinetic model, we show how human oral bioavailability is impacted by presystemic metabolism within the gut lumen, gut wall, and liver and how this impact differs among chemicals with various permeability and stability properties. Our results highlight the gut lumen as a primary site of presystemic metabolism of certain chemicals, such as di-2-ethylhexyl phthalate (DEHP), for which the gut lumen may even exceed the liver in importance of presystemic metabolism due to these metabolic processes occurring in sequence. For chemicals with low transmembrane permeability and low stability, metabolism within the gut lumen is the most remarkable of the three presystemic metabolic processes. Notably, for chemicals that undergo substantial metabolism within the gut lumen, where the metabolites have high permeability, there is a notable discrepancy between the "theoretical bioavailability" (bioavailability of the unchanged parent compound) and the "apparent bioavailability" in measurement practices (bioavailability inferred from measured metabolites). Our work highlights the importance of considering presystemic metabolism, notably within the gut lumen, in human exposure and toxicokinetic modeling.
Read full abstract