Community detection is a well-known area of research that yields essential results in various fields such as social media, biological networks, pandemic spread, recommendation systems, etc. There are two important areas for improvement in existing community detection algorithms: quality of community formed should be improved and a parallel approach to community detection is needed to handle massive data. In this paper, we have proposed a three-step parallel algorithm, Par-Com, using the concept of k Clique and modularity optimization to address both of the above issues. The proposed algorithm increases the execution speed and also improves the quality of the community formed by optimizing modularity. Par-Com uses dynamic load balancing on the multicore architecture of Supercomputer ParamShivay. We have also evaluated Par-Com’s performance against nine sequential and three parallel community detection algorithms on varying size datasets, i.e. karate, macaque, email, immuno, soc-epinions, facebook, and com-Friendster. The experiment result shows that Par-Com outperforms other algorithms under consideration with up to 45% increase in modularity and up to 84% increase in execution speed. Par-Com is also capable of detecting overlapping communities, fuzzy membership of each node, most influential node in each community formed, and outlier nodes. Nodes within a community that have the highest influence are deemed as experts. The choices made by an expert in a particular community are served as recommendations to other users within that community.
Read full abstract