A specific type of neurodegeneration with brain iron accumulation (NBIA) falls under the omit phenotypic continuum-early childhood development of progressive pantothenate kinase-associated neurodegeneration (PKAN). Classic PKAN is distinguished from atypical PKAN by stiffness, dystonia, dysarthria, and choreoathetosis. Pigmentary retinal degeneration is a widespread cause of classic PKAN. Atypical PKAN is distinguished by a later onset (>10 years), noticeable speech abnormalities, psychological disorders, and slower disease development. Studies designed to support various PKANtherapeutic strategies have highlighted the intricacy of coenzyme A (CoA) metabolism and the limitations of our present understanding of disease causation. Therefore, improvements in our knowledge of the causes and therapy of PKAN may have ramifications for our comprehension of other, more prevalent diseases. They may also shed fresh light on the physiological significance of CoA, a cofactor essential for the operation of several cellular metabolic processes. The existence of low but considerable PANK2 expression, which can be elevated in some mutations, provides necessary information that can justify using a hefty dose of pantothenate as a treatment. A more effective therapeutic approach can be achieved by comparing the effects of various currently available pharmacological alternatives on the pathophysiological alterations in fibroblasts and neuronal cells obtained from PKAN patients. The objective of this study is to educate and inform people about PKAN disease conditions such as treatment, diagnosis, and complications. These cell models will also help evaluate the effectiveness of future medicinal innovations. This review discusses the neurodegeneration generated by pantothenate kinase in cellular models, iron/lipofuscin in pantothenate kinase-related neurodegeneration, and treatment and diagnosis of PKAN.
Read full abstract