Pole positions from previous palaeomagnetic work in the late Palaeoproterozoic Waterberg Group, South Africa [Jones, D.L., McElhinny, M.W., 1967. Stratigraphic interpretation of paleomagnetic measurements on the Waterberg Red Beds of South Africa. Journal of Geophysical Research 72, 4171–4179] seemed to indicate that Waterberg Group sedimentation commenced during emplacement of the ca. 2.06 Ga Bushveld Complex, and continued intermittently through numerous tectonic events affecting the preserved Transvaal Basin to just before the ca. 1.1 Ga Umkondo thermal event of southern Africa. However, from these studies no consistent directions could be determined. Instead, a pattern was identified and interpreted in terms of apparent polar wander during the deposition and consolidation of the Waterberg sediments within South Africa and Botswana. The Swaershoek Formation, the basal unit of the Waterberg Group in the Nylstroom Protobasin, has been tentatively correlated with the Wilge River Formation, which is the only unit in the Middelburg basin. A new palaeomagnetic study on the Swaershoek and Wilge River Formations is reported here in an attempt to re-determine the palaeomagnetic pole positions for these two formations and to confirm their correlation. A total of 49 sites across both basins were sampled, both within the sedimentary succession and in the associated diabase intrusions. The calculated anti-poles for the Swaershoek Formation (18.9°N, 7.7°E, A 95 = 21.9°) and the Wilge River Formation (16.9°N, 0.2°E, A 95 = 22.4°) cannot be distinguished at the 95% level of confidence, although scattering is high. This either confirms the geological correlation or indicates simultaneous magnetic overprinting. The results from the two basins are provisionally combined to present a mean pole position for the lower-Waterberg Group. The mean anti-pole for the lower-Waterberg Group is 17.9°N, 3.9°E, A 95 = 16.2°. The diabase in both basins was sampled to test for thermal overprinting of the magnetic direction of the sedimentary rocks. Although the calculated anti-pole for the diabase in the Nylstroom Protobasin (63.3°N, 53.2°E and A 95 = 35.7°) is poorly determined, its circle of 95% confidence includes the confidence region of the diabase in the Middelburg basin (anti-pole 69.3°N, 28.5°E and A 95 = 14.2°). These two poles cannot be distinguished from the results of previous studies on post-Waterberg diabase [Jones, D.L., McElhinny, M.W., 1966. Paleomagnetic correlation of basic intrusions in the Precambrian of Southern Africa. Journal of Geophysical Research 71, 543–552] nor from results of the Umkondo diabase [McElhinny, M.W., Opdyke, N.D., 1964. The palaeomagnetism of the Precambrian dolerites of eastern South Rhodesia. An example of geologic correlation by rock magnetism. Journal of Geophysical Research 69, 2465–2475]. The pole positions from the Waterberg sediment and associated diabase are sufficiently displaced from each other to rule out any overprinting by these intrusions. It does not, however, rule out magnetic overprinting at some earlier or later age. The calculated mean pole position for the lower-Waterberg Group is tentatively interpreted to represent a direction of magnetic overprinting due to the ∼1.88 Ga Palaeoproterozoic intraplate magmatism associated with the Eburnean Event, which means that the cumulative of palaeomagnetic data can no longer connect the onset of Waterberg sedimentation with the emplacement of the Bushveld Complex.
Read full abstract