The potential migration of chemical compounds from plastic food packaging poses significant health risks, necessitating continuous monitoring and enhanced safety protocols. This study aimed to investigate the migration of nine chemical groups, including alanine, acetic acid, cyano derivatives, urea, amines, amides, benzene derivatives, nitrites, and non-specified compounds, across different food categories. A total of 195 packaged food samples from eleven food categories were analyzed using Headspace Gas Chromatography-Mass Spectrometry (GC-MS) to identify and quantify chemical migrants. Statistical analysis revealed significant differences in migration levels among food categories (p < 0.05). Cheese, candies, and chips exhibited the highest concentrations of alanine (65.95 ± 0.6384 mg/kg), acetic acid (57.80 ± 0.6383 mg/kg), and benzene derivatives (59.96 ± 1.844 mg/kg), respectively, while frozen raw meat and seafood showed the lowest levels for most compounds. High benzene and nitrite concentrations in certain samples raised particular concern due to their carcinogenic and toxicological effects. Regression analysis confirmed that food matrix type is a strong predictor of migration levels for several compounds. The findings emphasize the urgent need for stricter regulation, improved analytical techniques, and the development of safer packaging materials to reduce chemical migration risks and protect public health.
Read full abstract