To observe and verify the changes of transcriptome in hyperoxia-induced acute lung injury (HALI), and to further clarify the changes of pathways in HALI. Twelve healthy male C57BL/6J mice were randomly divided into normoxia group and HALI group according to the random number table, with 6 mice in each group. The mice in the normoxia group were fed normally in the room, and the mice in the HALI group was exposed to 95% oxygen to reproduce the HALI animal model. After 72 hours of hyperoxia exposure, the lung tissues were taken for transcriptome sequencing, and then Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway enrichment analysis was performed. The pathological changes of lung tissue were observed under light microscope after hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to verify the key molecules in the signal pathways closely related to HALI identified by transcriptomics analysis. Transcriptomic analysis showed that hyperoxia induced 537 differentially expressed genes in lung tissue of mice as compared with the normoxia group including 239 up-regulated genes and 298 down-regulated genes. Further KEGG pathway enrichment analysis identified 20 most significantly enriched pathway entries, and the top three pathways were ferroptosis signaling pathway, p53 signaling pathway and glutathione (GSH) metabolism signaling pathway. The related genes in the ferroptosis signaling pathway included the up-regulated gene heme oxygenase-1 (HO-1) and the down-regulated gene solute carrier family 7 member 11 (SLC7A11). The related genes in the p53 signaling pathway included the up-regulated gene tumor suppressor gene p53 and the down-regulated gene murine double minute 2 (MDM2). The related gene in the GSH metabolic signaling pathway was up-regulated gene glutaredoxin 1 (Grx1). The light microscope showed that the pulmonary alveolar structure of the normoxia group was normal. In the HALI group, the pulmonary alveolar septum widened and thickened, and the alveolar cavity shrank or disappeared. RT-RCR and Western blotting confirmed that compared with the normoxia group, the mRNA and protein expressions of HO-1 and p53 in lung tissue of the HALI group were significantly increased [HO-1 mRNA (2-ΔΔCt): 2.16±0.17 vs. 1.00±0.00, HO-1 protein (HO-1/β-actin): 1.05±0.01 vs. 0.79±0.01, p53 mRNA (2-ΔΔCt): 2.52±0.13 vs. 1.00±0.00, p53 protein (p53/β-actin): 1.12±0.02 vs. 0.58±0.03, all P < 0.05], and the mRNA and protein expressions of Grx1, MDM2, SLC7A11 were significantly decreased [Grx1 mRNA (2-ΔΔCt): 0.53±0.05 vs. 1.00±0.00, Grx1 protein (Grx1/β-actin): 0.54±0.03 vs. 0.93±0.01, MDM2 mRNA (2-ΔΔCt): 0.48±0.03 vs. 1.00±0.00, MDM2 protein (MDM2/β-actin): 0.57±0.02 vs. 1.05±0.01, SLC7A11 mRNA (2-ΔΔCt): 0.50±0.06 vs. 1.00±0.00, SLC7A11 protein (SLC7A11/β-actin): 0.72±0.03 vs. 0.98±0.01, all P < 0.05]. HALI is closely related to ferroptosis, p53 and GSH metabolism signaling pathways. Targeting the key targets in ferroptosis, p53 and GSH metabolism signaling pathways may be an important strategy for the prevention and treatment of HALI.
Read full abstract