AlH3 is a highly promising additive for energetic materials and has gained considerable attention as a substitute fuel for aluminum in solid propellants. In order to improve its compatibility with energetic materials and oxidants, carbon coating materials are often used. Nitrated graphene oxide (NGO) was prepared and used as a surface modifier of α-AlH3 in our study. Various analytical techniques were utilized to examine its structure and morphology, including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), particle size distribution (PSD) and X-ray diffraction (XRD). The oxidization, ignition characteristics, flame propagation behavior and heat of combustion of AlH3 and AlH3/NGO powder were investigated using differential thermal analysis (DTA), a laser igniter, a high-speed camera and an oxygen bomb calorimetry. Results show that NGO coating agent catalyzes the thermal decomposition and hydrogenation process of AlH3, and accelerates the oxidation process of AlH3. The addition of 4 % NGO decreases the oxidation activation energy of AlH3 by about 8.94 %. The laser ignition energy of AlH3/NGO is much lower than that of AlH3, and the ignition energy decreases linearly as NGO is added from 1 % to 10 %. The flame development process supports the good thermal conductivity assistance effect of an appropriate amount of NGO in the combustion process of AlH3 in air, which is consistent with the result of oxygen bomb test, indicating that the addition of NGO leads to an improvement in the combustion efficiency of AlH3.This may provide valuable insights for the development of new high-energy solid propellants.
Read full abstract