This paper presents a flipped voltage follower (FVF) based output-capacitor-less low-dropout regulator (OCL-LDO) with fast transient response, high power supply rejection (PSR), and low quiescent current for noise-sensitive circuits in internet-of-things (IoTs). An adaptive super source follower (ASSF) is proposed to effectively reduce the output impedance of the voltage buffer under heavy-loading conditions while keeping a low quiescent current under light-loading conditions. The active capacitor compensation management (ACCM) is proposed to solve the charge-sharing problem caused by the floating capacitors in the dynamic capacitor compensation circuit. The proposed OCL-LDO has been designed and fabricated in 22-nm CMOS technology. It can stabilize with load current ranging from 0 to 12 mA while consuming only 4.8-μA quiescent current. when the load current steps from 0.1 to 10 mA within 3.8 ns, the measured voltage undershoot is 55 mV and the recovery time is about 60 ns.
Read full abstract