Cell volume regulation is an essential strategy for the maintenance of life under unfavorable osmotic conditions. Mechanisms aimed at minimizing the physiological challenges caused by environmental changes are crucial in anisosmotic environments. However, aquatic ecosystems experience multiple stressors, including variations in salinity and heavy metal pollution. The accumulation of heavy metals in aquatic ecosystems has a significant effect on the biota, leading to impaired function. The aim of this study was to investigate the capacity of volume regulation in isolated cells of the sea anemone Bunodosoma cangicum exposed to nominal copper (Cu) concentrations of 5 and 50µg L-1, associated or not with hypoosmotic (15‰) or hyperosmotic (45‰) shock for 15min. In the absence of the metal, our results showed volume maintenance in all osmotic conditions. Our results showed that cell volume was maintained under all osmotic conditions in the absence of Cu. Similarly, no significant differences were observed in cell volumes under isosmotic and hyperosmotic conditions in the presence of both Cu concentrations. A similar homeostatic response was observed under the hypoosmotic condition with 5µg L-1 Cu. Our results showed an increase in cell volume with exposure of the cells to the hypoosmotic condition and 50µg L-1 Cu. The response could be associated with the increased bioavailability of Cu, reduced ability to resist multixenobiotics and their efflux pathways, and the impairment of water efflux in specialized transmembrane proteins. Therefore, B. cangicum pedal disk cells can tolerate osmotic variations in aquatic ecosystems. However, the capacity to regulate cell volume under hypoosmotic conditions can be affected by the presence of a metal contaminant (50µg L-1 Cu), which could be due to the inhibition of water channels.
Read full abstract