The Los Encinos Volcanic Field (LEVF) consists of Miocene (10.6–13.6 Ma) hawaiitic volcanic necks and lava-capped mesas that crop out sparsely over an area of 11,500 km2 at the eastern margin of the Mexican Basin and Range Province (BRP). The LEVF rocks are similar to other early extensional hawaiites from the southern BRP, and provide numerous contrasts with younger basanites and alkali basalts that erupted during the Quaternary at the Ventura and Santo Domingo Volcanic Fields about 100 km to the south. A suite of 18 LEVF hawaiites was studied in thin section, and analyzed for mineral compositions, whole-rock major and trace element compositions, and Sr, Nd, and Pb isotopic ratios. All samples contain the stable minerals plagioclase (An53–64), olivine (Fo61–88), clinopyroxene, titanomagnetite, and minor biotite. Most samples also contain a complex assemblage of resorbed and reacted xenocrysts and megacrysts. Some of these minerals appear to have crystallized slowly from related, but more differentiated magmas, but other xenocrysts were clearly derived from lower-crustal, high-grade orthogneisses and paragneisses that are found as large xenoliths in the nearby Quaternary volcanic fields. Quartz xenocrysts are especially common in many hawaiites (up to 3.9 vol.%) and show a wide range of reaction styles. One sample contains microxenoliths of sillimanite- and quartz-bearing paragneiss with fine-grained domains that are interpreted as coronal structures related to original garnet xenocrysts. The geochemical effects of crustal contamination in the LEVF hawaiites vary widely. Five samples appear to be essentially uncontaminated (type U). Aside from being somewhat differentiated from a more primitive parent, the type-U samples can be used to infer the geochemistry of the mantle that was melting during the early stages of basin-and-range rifting. Type-U samples range up to ɛNd and down to 87Sr/86Sr=0.70286 and 206Pb/204Pb=18.74, compositions that are more extreme than any of the nearby Quaternary volcanic rocks. The other 13 samples are divided into two contamination types, A and B. Both types show trends toward higher 87Sr/86Sr (to 0.7040) and 206Pb/204Pb (to 18.98), lower ɛNd (to +3.1), and elevated Yb, which appear to reflect bulk or AFC-style contamination by granulites, particularly garnet-bearing paragneisses. Type-A hawaiites also show selective enrichments in Cs, Rb, Th, Sb, U, Pb, K, and Si. These elements were probably transferred into the type-A hawaiitic magmas through mixing with low-degree partial melts from deep-crustal granulites. The enrichments of these elements in type-A hawaiites complement the depletions of many of these same elements in highgrade granulites worldwide and provide insight into the origin of those depletions. Mixing models between type-U hawaiites and paragneiss xenoliths indicate that up to 45% of the Pb found in type-A hawaiites is crustally derived. In comparison with more mafic Quaternary basanitic rocks from the volcanic fields to the south, which carried large peridotite and granulite xenoliths to the surface, the LEVF hawaiites are relatively differentiated and megacryst rich, but free of large xenoliths, and show a wide variety of petrographic and geochemical evidence for crustal contamination. These differences probably reflect the slow and interrupted ascent of the LEVF hawaiites during early stages of basin-and-range extension in the Miocene, when the crust had a somewhat lower density and the entire lithosphere was relatively thick and cool. We argue that Quaternary basanites were able to ascend significantly faster through the thinner, hotter, and more fractured and extended lithosphere, whose crust was made denser by mafic intrusions during the preceding magmatic episode. Consequently the Quaternary basanites rose without stagnating and interacting with crustal lithologies, and without losing their entrained peridotite xenoliths.
Read full abstract