Many solar panels for spacecrafts are deployed by Tape Spring Hinges (TSHs) which have changeable stiffness. The stiffness of TSH is small when panels are folded, and it becomes large quickly in its deployed status. Since the solar panel is a thin sheet, flexible deformation is easily generated by orbit maneuvers. The coupling effect between the nonlinear TSHs and the flexible panels generates obvious vibration which affects the operational stability of the satellite. To investigate this coupling effect, non-deformable, linear deformable and nonlinear deformable panels were modelled by rigid body, modal order reduction method (MORM) and finite element method (FEM), respectively. The driving torque of TSH was described as a function of the rotation angle and angular velocity. The nonlinear properties of the TSH were reflected by one angle-stiffness spline multiplied by one stiffness coefficient. Dynamic responses of a satellite in deployment and orbit steering were analyzed by numerical simulations. Analysis results indicate the local deformation of panels keeps the stiffness of the TSH within a large range which accelerates the orbit maneuvers. However, much vibration is generated by the coupling effect if the luck-up status is broken up. The coupling effect affects the sequence of deployment, overshoot phenomenon and acceleration magnitude of the panels. Although the MORM is more efficient than FEM in computation, we propose FEM is better suited in the design of TSH and in studying the precise control of spacecraft with flexible solar panels and TSHs.
Read full abstract