We consider the interplay of the muon g−2 anomaly and the proton decay in the supersymmetry (SUSY) SU(5) grand unified theories (GUTs) with generation-independent scalar soft masses. In these scenarios, we introduce a number of 5+5¯ messenger fields with doublet-triplet splitting in general gauge mediation to transmit SUSY breaking to the visible sector by gauge loops. As a result, squarks and sleptons receive generation-independent soft SUSY breaking masses, which are split already at the messenger scale. Taking into account the perturbative unification of gauge couplings as well as the bounds from electroweak precision and vacuum stability bounds, we showed the parameter space in general gauge mediation to explain the muon g−2 anomaly with smuon and sneutrino loops while evading the strong bounds on squarks and gluinos from the Large Hadron Collider. We also obtained the dominant Higgsino contributions to the proton decay mode, p→K+ν¯, with general generation-independent sparticle masses for squarks and sleptons. Even for split scalar soft masses in our model, however, we found that the bounds from the proton decay are satisfied only if the effective Yukawa couplings of the colored Higgsinos are suppressed further by a factor of order 10−4–10−3. We illustrated how such a suppression factor is realized in orbifold GUTs in the extra dimension where the colored Higgsinos in the bulk are not coupled to the matter fields localized at the orbifold fixed points at the leading order. Published by the American Physical Society 2024
Read full abstract