Soil moisture wireless sensor networks (SMWSNs) are used in the field of information monitoring for precision farm irrigation, which monitors the soil moisture content and changes during crop growth and development through sensor nodes at the end. The control terminal adjusts the irrigation water volume according to the transmitted information, which is significant for increasing the crop yield. One of the main challenges of SMWSNs in practical applications is to maximize the coverage area under certain conditions of monitoring area and to minimize the number of nodes used. Therefore, a new adaptive Cauchy variant butterfly optimization algorithm (ACBOA) has been designed to effectively improve the network coverage. More importantly, new Cauchy variants and adaptive factors for improving the global and local search ability of ACBOA, respectively, are designed. In addition, a new coverage optimization model for SMWSNs that integrates node coverage and network quality of service is developed. Subsequently, the proposed algorithm is compared with other swarm intelligence algorithms, namely, butterfly optimization algorithm (BOA), artificial bee colony algorithm (ABC), fruit fly optimization algorithm (FOA), and particle swarm optimization algorithm (PSO), under the conditions of a certain initial population size and number of iterations for the fairness and objectivity of simulation experiments. The simulation results show that the coverage rate of SMWSNs after ACBOA optimization increases by 9.09%, 13.78%, 2.57%, and 11.11% over BOA, ABC, FOA, and PSO optimization, respectively.
Read full abstract