To address the shortcomings of the Dung Beetle Optimization (DBO) algorithm in ship power-system fault reconfiguration, such as low population diversity and an imbalance between global exploration and local exploitation, the authors of this paper propose an improved Dung Beetle Optimization (LESSDBO) algorithm. The improvements include optimizing the initial population using Latin hypercube sampling and an elite population strategy, optimizing parameters with an improved sigmoid activation function, introducing the sine–cosine algorithm (SCA) for position update optimization, and performing multi-population mutation operations based on individual quality. The LESSDBO algorithm was applied to simulate the fault reconfiguration of a ship power system, and it was compared with the traditional DBO, Genetic Algorithm (GA), and Modified Particle Swarm Optimization (MSCPSO) methods. The simulation results showed that LESSDBO outperformed the other algorithms in terms of convergence accuracy, convergence speed, and global search capability. Specifically, in the reconfiguration under Fault 1, LESSDBO achieved optimal convergence in seven iterations, reducing convergence iterations by more than 30% compared with the other algorithms. In the reconfiguration under Fault 2, LESSDBO achieved optimal convergence in eight iterations, reducing convergence iterations by more than 23% compared with the other algorithms. Additionally, in the reconfiguration under Fault Condition 1, LESSDBO achieved a minimum of four switch actions, which is 33% fewer than the other algorithms, on average. In the reconfiguration under Fault Condition 2, LESSDBO achieved a minimum of eight switch actions, which is a 5.9% reduction compared with the other algorithms. Furthermore, LESSDBO obtained the optimal reconfiguration solution in all 50 trials for both Faults 1 and 2, demonstrating a 100% optimal convergence probability and significantly enhancing the reliability and stability of the algorithm. The proposed method effectively overcomes the limitations of the traditional DBO in fault reconfiguration, providing an efficient and stable solution for the intelligent topology reconfiguration of ship power systems.
Read full abstract