In this study, a polygalacturonase (PGase) producing bacterial strain was isolated and identified as Pseudomonas sp. 13159349 from fruit market soils, and TLC analysis confirmed its pectinolytic activity. Additionally, SSF, Plackett-Burman design (PB), and response surface methodology (RSM) were used to optimize the production of this thermostable and alkalophilic PGase. Wheat bran demonstrated the highest activity (60.13 ± 3.39 U/gm) among the various agricultural wastes used as solid substrates. To further enhance the enzyme production, statistical optimization of media components was investigated using the PB design. Among the 11 variables tested, pH (p < 0.0001), inoculum size (p < 0.0001), incubation time (p < 0.0001), and temperature (p < 0.0041) were found to have a positive effect on the production. The interaction and concentration of the selected factors were examined by RSM, which demonstrated the optimal conditions for maximum production (315.65 U/gm) of the enzyme using wheat bran as the solid substrate were pH 10.5, 61–66 h of incubation, and 6–7.5% inoculum size. The model was highly significant, with a p-value of <0.0001, an F-value of 95.33, and a low CV of 2.31. The RSM model was validated by a laboratory-scale experiment showing 30600 ± 400.32 U/100 gm PGase activity. Thus, SSF and the statistical design of media components resulted in a significant 5.2-fold increase in PGase output solely by using agro waste and optimizing the physical parameters, making this a highly cost-effective bioprocess.
Read full abstract