Creatinine concentration is one of the important elements in the body for diagnosing kidney failure, muscular dystrophy, glomerular filtration rate, and diabetic nephropathy. The disadvantages of recently introduced analytical techniques, such as Jaffe's, spectroscopic, colorimetric, and chromatographic methods, for quantifying creatinine in urine involve toxicity, the high cost, interference, and the complexity of the design. In this paper, we designed and fabricated a new colorimetric assay for the measurement of creatinine concentration based on color differentiation generated by mixing different concentrations of creatinine with synthesized silver nanoparticles (AgNPs) coated with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA). An isolated box is designed for the uniform optical imaging of solutions, the captured images are processed in real time, and the quantitative and qualitative results are displayed. For colorimetric processing, a variety of color systems, such as RGB (red, green, blue), CMYK (cyan, magenta, yellow, black), and grayscale (Gr), have been evaluated, indicating that the combination of green (G) and grayscale (Gr) provides the best results for this experiment. TEM analysis and spectroscopy were used to confirm the results of the experiment. Linear range and limit of detection (LOD) were obtained for AgNPs/PVP 0.03-1mg/dl and 0.024mg/dl and for AgNPs/PVA 0.01-1mg/dl and 0.014mg/dl, respectively, indicating the superiority of our proposed method over recently introduced methods. In this experiment, the detectable resolution with AgNPs/PVP is 40, while it is 71 with AgNPs/PVA. The designed system is simple to use, small in size, and cost-effective for measuring creatinine concentration, while it can be used as a portable system.
Read full abstract