The retinal pigment epithelium (RPE) to Bruch membrane (BM) distance around geographic atrophy (GA) was measured using an optical attenuation coefficient (OAC) algorithm to determine whether this measurement could serve as a clinical biomarker to predict the annual square root enlargement rate (ER) of GA. A retrospective analysis of a prospective, observational case series. Eyes with GA secondary to age-related macular degeneration (AMD) were imaged with swept-source OCT (SS-OCT) using a 6×6-mm scan pattern. GA lesions were identified and measured using customized en face OCT images, and GA annual square root ERs were calculated. At baseline, the OACs were calculated from OCT datasets to generate customized en face OAC images for GA visualization. RPE-BM distances were measured using OAC data from different subregions around the GA. A total of 38 eyes from 27 patients were included in this study. Measured RPE-BM distances were the highest in the region closest to GA. The RPE-BM distances immediately around the GA were significantly correlated with GA annual square root ERs (r=0.595, P < .001 for a 0- to 300-µm rim around the GA). No correlations were found between RPE-BM distances and previously published choriocapillaris (CC) flow deficits in any subregions. RPE-BM distances from regions around the GA significantly correlate with the annual ERs of GA. These results suggest that an abnormally thickened RPE/BM complex contributes to GA growth and that this effect is independent of CC perfusion deficits.
Read full abstract