Vibrio alginolyticus is one of the most common opportunistic pathogens in marine animals and humans. In this study, A transposon mutation library of the V. alginolyticus E110 was used to identify motility-related genes, and we found three flagellar and one capsular polysaccharide (CPS) synthesis-related genes were linked to swarming motility. Then, gene deletion and complementation further confirmed that CPS synthesis-related gene ugd is involved in the swarming motility of V. alginolyticus. Phenotype assays showed that the Δugd mutant reduced CPS production, decreased biofilm formation, impaired swimming ability, and increased cytotoxicity compared to the wild-type strain. Transcriptome analysis showed that 655 genes (15%) were upregulated and 914 genes (21%) were downregulated in the Δugd strain. KEGG pathway and heatmap analysis revealed that genes involved in two-component systems (TCSs), chemotaxis, and flagella assembly pathways were downregulated in the Δugd mutant. On the other hand, genes involved in pathways of human diseases, biosynthesis ABC transporters, and metabolism were upregulated in the Δugd mutant. The RT-qPCR further validated that ugd-regulated genes are associated with motility, biofilm formation, virulence, and TCSs. These findings imply that ugd may be an important player in the control of some physiological processes in V. alginolyticus, highlighting its potential as a target for future research and potential therapeutic interventions.
Read full abstract