Quadcopter drones are capable of executing complex aerobatic maneuvers when controlled manually by skilled pilots but are limited to simple aerobatic actions when flying autonomously in open spaces. As such, this study introduces a comprehensive system that enables drones to generate and execute sophisticated aerobatic maneuvers in complex environments with dense obstacle distributions. A universal representation is proposed, succinctly capturing flight as a series of discrete aerobatic intentions. These intentions consist of topology and attitude changes, which can be combined in various ways to describe intricate flight maneuvers. A spatial-temporal joint optimization trajectory planner is also introduced to generate dynamically feasible trajectories that are as smooth as possible and devoid of collisions. In addition, we investigate unique yaw sensitivity issues in aerobatic flight and identify the inherent influence of differential flatness singularities on yaw rotations while avoiding associated dynamics issues. A series of ablation studies confirmed the necessity of these spatial-temporal joint optimization and yaw compensation strategies. Additional simulations and physical experiments validated the stability and feasibility of our proposed system for improving uncrewed aerial flight. The proposed system enables drones to autonomously achieve flight performance usually reserved for professional pilots, unlocking boundless potential for aerobatic flight evolution in uncrewed aerial vehicles.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
17657 Articles
Published in last 50 years
Articles published on Open Space
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
17566 Search results
Sort by Recency