Particle Swarm Optimization (PSO) is a widespread evolutionary technique that has successfully solved diverse optimization problems across various application fields. However, when dealing with more complex optimization problems, PSO can suffer from premature convergence and may become stuck in local optima. The primary goal is accelerating convergence and preventing solutions from falling into these local optima. This paper introduces a new approach to address these shortcomings and improve overall performance: utilizing a reinforcement deep learning method to carry out online adjustments of parameters in a homogeneous Particle Swarm Optimization, where all particles exhibit identical search behaviors inspired by models of social influence among uniform individuals. The present method utilizes an online parameter control to analyze and adjust each primary PSO parameter, particularly the acceleration factors and the inertia weight. Initially, a partially observed Markov decision process model at the PSO level is used to model the online parameter adaptation. Subsequently, a Hidden Markov Model classification, combined with a Deep Q-Network, is implemented to create a novel Particle Swarm Optimization named DPQ-PSO, and its parameters are adjusted according to deep reinforcement learning. Experiments on different benchmark unimodal and multimodal functions demonstrate superior results over most state-of-the-art methods regarding solution accuracy and convergence speed.
Read full abstract