Chirality-induced spin selectivity (CISS), which was demonstrated in several molecular and material systems, has drawn much interest recently. The phenomenon, described in electron transport by the difference in the transport rate of electrons of opposite spins through a chiral system, is however not fully understood. Herein, we employed density functional theory in conjunction with spin-orbit coupling to evaluate the percent spin-polarization in a device setup with finite electrodes at zero bias, using an electron transport program developed in-house. To study the interface effects and the level of theory considered, we investigated a helical oligopeptide chain, an intrinsically chiral gold cluster, and a helicene model system that was previously studied (Zöllner et al. J. Chem. Theory Comput. 2020, 16, 7357-7371). We find that the magnitude of the spin-polarization depends on the chiral system-electrode interface that is modeled by varying the interface boundary between the system's regions, on the method of calculating spin-orbit coupling, and on the exchange-correlation functional, e.g., the amount of exact exchange in the hybrid functionals. In addition, to assess the effects of bias, we employ the nonequilibrium Green's function formalism in the Quantum Atomistix Toolkit program, showing that the spin-flip terms could be important in calculating the CISS effect. Although understanding CISS in comparison to experiment is still not resolved, our study provides intrinsic responses from first-principles calculations.
Read full abstract