In areas with limited access to electricity or during power outages, ensuring continuous and reliable use of grid-powered electrical instruments is challenging, especially in remote emergency centers. A stable source of electricity is crucial to prevent disruptions in power supply, as they can lead to severe medical complications, jeopardize patient well-being, and even result in fatal incidents. To address this issue, integrating renewable electricity sources such as off-grid solar systems into existing power supply infrastructure can be a viable solution. Recent studies suggest that off-grid solar systems can be reliable and sustainable options for powering medical facilities, particularly in areas lacking uninterrupted grid connectivity. Therefore, this research aims to evaluate the feasibility, benefits, and challenges of integrating off-grid power to support critical medical instruments. Based on an extensive literature review, interviews with experts, and surveys among relevant users, this study finds that the system has the capability to maintain a consistent, dependable power supply, even during adverse weather conditions. Cost and feasibility are highlighted as paramount considerations, based on surveys and focus group results. The study concludes that off-grid solar systems offer an economical, low-maintenance, and environmentally sustainable alternative for remote medical facilities. Finally, this study proposes recommendations to optimize critical device performance during power outages and improve overall system functionality and efficiency.