Melatonin is a hormone known as an endogenous temporal marker signaling the dark phase of the day. Although the eyes seem to be the main site of melatonin production in amphibians, little information is available about the natural variation in the ocular melatonin levels and its modulation following immune stimulation. We investigated the daily variation of plasma and ocular melatonin levels in bullfrogs (Lithobates catesbeianus) and their modulation following an immune stimulation with lipopolysaccharide (LPS) in yellow cururu toads (Rhinella icterica). For the daily variation, bullfrogs were bled and then euthanized for eye collection every 3h over 24h to determine plasma and ocular melatonin levels. We found a positive correlation between ocular and plasma melatonin levels, with maximum values at night (22h) for both plasma and the eyes. For immune stimulation, yellow cururu toads received an intraperitoneal injection of LPS or saline solution during the day (10h) or at night (22h). Two hours after injection, toads were bled and euthanized for eye collection to obtain plasma and ocular melatonin levels. In addition, the liver and bone marrow were collected to investigate local melatonin modulation. Our results demonstrate that retina light-controlled rhythmic melatonin production is suppressed while liver and bone marrow melatonin levels increase during the inflammatory assemblage in anurans. Interestingly, the LPS injection decreased only ocular melatonin levels, reinforcing the central role of the eyes (i.e., retina) as an essential organ of melatonin production, and a similar role to the pineal gland during the inflammatory response in amphibians. Together, these results point to a possible immune-pineal-ocular axis in amphibians, yet to be fully described in this group.
Read full abstract