Treatment of urethral mucosa defects is a major challenge in urology. Synthetic materials or autologous mucosa does not provide satisfactory treatment options for long-term or large urethral mucosa defects. In response to this problem, we used autologous adipose-derived stem cells (ADSCs) to synthesize cell sheets in vitro for repairing urethral mucosa defect models. In order to monitor the localization and distribution of cell sheets in vivo, cells and sheets were labeled with indocyanine green (ICG) and the second near-infrared (NIR-II) fluorescence imaging was performed. ICG-based NIR-II imaging can successfully track ADSCs and sheets in vivo up to 8 W. Then, rabbit urethral mucosa defect models were repaired with ICG-ADSCs sheets. At 3 months after operation, retrograde urethrography showed that ADSC sheets could effectively repair urethral mucosa defect and restore urethral patency. Histological analysis showed that in ADSC sheet groups, continuous epithelial cells covered the urethra at the transplantation site, and a large number of vascular endothelial cells could also be seen. In the cell-free sheet group, there was no continuous epithelial cell coverage at the repair site of the urethra, and the expression of pro-inflammatory factor TNF-α was increased. It shows that the extracellular matrix alone without cells is not suitable for repairing urethral defects. Surviving ADSCs in the sheets may play a key role in the repair process. This study provides a new tracing method for tissue engineering to dynamically track grafts using an NIR-II imaging system. The ADSC sheets can effectively restore the structure and function of the urethra. It provides a new option for the repair of urethral mucosa defects.
Read full abstract