1. The aim of this study was to test whether parabrachial area (PBA) stimulation exerts inhibitory influences on the spontaneous activity and responses evoked by skin and deep afferent inputs in trigeminal subnucleus caudalis (Vc) neurons, and to compare these effects with those of nucleus raphe magnus (NRM) stimulation. A total of 92 nonnociceptive and nociceptive Vc neurons was recorded in urethan/alpha-chloralose-anesthetized rats. Each neuron was functionally classified as low-threshold mechanoceptive (LTM), wide dynamic range (WDR), nociceptive-specific (NS), nociceptive convergent with both skin and deep inputs (S+D), or deep nociceptive (D); the LTM neurons could be subdivided as rapidly adapting (RA) or slowly adapting (SA). Conditioning stimulation was applied to histologically verified sites in PBA and NRM. 2. The spontaneous or evoked activity of all classes of neurons could be inhibited by PBA as well as by NRM stimulation, but generally the incidence and magnitude of inhibition were lower for the LTM neurons. Occasionally, facilitation of neuronal activity was also produced by PBA and NRM stimulation. 3. The spontaneous activity of 11 LTM neurons (6 RA, 5 SA), 13 nociceptive neurons (6 WDR, 7 NS), and 5 D neurons was tested with stimulation of PBA or NRM or both. LTM spontaneous activity was more significantly inhibited by NRM stimulation than by PBA stimulation, whereas both NRM and PBA stimulation had similar and significant inhibitory effects on NS, WDR, and D neurons. 4. The evoked nonnociceptive responses of 28 LTM neurons (16 RA, 12 SA) and of 6 WDR neurons were also tested with stimulation of PBA or NRM or both. The magnitudes of inhibition of the responses produced by PBA conditioning stimulation were statistically significantly less than those induced by NRM conditioning stimulation. 5. The cutaneous and deep nociceptive responses of cutaneous nociceptive neurons (9 NS, 19 WDR) and seven D neurons, respectively, were also tested with PBA and NRM stimulation. There was a significant difference in potency between PBA- and NRM-induced inhibition, but no difference in the magnitude of inhibitory effects among NS, WDR, and D neurons. For both PBA and NRM conditioning stimulation, graded increases in intensities of stimulation produced linear increases in inhibitory effects on nociceptive responses; an increase in stimulation frequency from 5 to 400 Hz also produced increases in inhibition of the nociceptive responses. 6. In five S+D nociceptive convergent neurons, the responses elicited by deep inputs were more powerfully inhibited by PBA stimulation than those elicited by cutaneous inputs.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract