Experimental mito-nuclear introgression lines (MNILs) were established by backcrossing isofemale lines of D. subobscura originating from the same populations. MNILs were subjected to a series of life-history experiments designed to test the fitness of the bearers of different combinations of two main mtDNA haplotypes on their own nuclear background, as well as on the background of the opposite haplotype. By having 11 replicas of the four mito-nuclear combinations, we could test not only the adaptive significance of the differences between the two main haplotypes but also the influence of additional variation present within each of the 11 combinations on fitness. Testing the fitness of individuals of both sexes enabled us to examine if sex-specific selection has a role in maintaining the frequencies of the two mtDNA haplotypes in nature. Conducting the fitness assays on two different temperatures enabled us to test whether different temperatures favor specific mtDNA haplotypes or mito-nuclear genotypes and consequently promote stable sympatric mtDNA variation. The results show weak signature of genotype-by-environment interactions, and no sex-specific selection regarding differences between the two main haplotypes. However, individual models across different life-history components showed these two mechanisms at play in promoting mtDNA variability present in specific mito-nuclear crosses. Our models show that mito-nuclear interactions are, in fact, more important as units of selection.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
593 Articles
Published in last 50 years
Articles published on Nuclear Background
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
560 Search results
Sort by Recency