The Exponential-Time Hypothesis (ETH) is a strengthening of the 𝒫 ≠ 𝒩𝒫 conjecture, stating that 3- SAT on n variables cannot be solved in (uniform) time 2 εċ n , for some ε > 0. In recent years, analogous hypotheses that are “exponentially strong” forms of other classical complexity conjectures (such as 𝒩𝒫⊈ ℬ𝒫𝒫 or co 𝒩𝒫⊈𝒩𝒫) have also been introduced and have become widely influential. In this work, we focus on the interaction of exponential-time hypotheses with the fundamental and closely related questions of derandomization and circuit lower bounds . We show that even relatively mild variants of exponential-time hypotheses have far-reaching implications to derandomization, circuit lower bounds, and the connections between the two. Specifically, we prove that: (1) The Randomized Exponential-Time Hypothesis (rETH) implies that ℬ𝒫𝒫 can be simulated on “average-case” in deterministic (nearly-)polynomial-time (i.e., in time 2 Õ(log( n )) = n loglog( n ) O(1) ). The derandomization relies on a conditional construction of a pseudorandom generator with near-exponential stretch (i.e., with seed length Õ(log ( n ))); this significantly improves the state-of-the-art in uniform “hardness-to-randomness” results, which previously only yielded pseudorandom generators with sub-exponential stretch from such hypotheses. (2) The Non-Deterministic Exponential-Time Hypothesis (NETH) implies that derandomization of ℬ𝒫𝒫 is completely equivalent to circuit lower bounds against ℰ, and in particular that pseudorandom generators are necessary for derandomization. In fact, we show that the foregoing equivalence follows from a very weak version of NETH, and we also show that this very weak version is necessary to prove a slightly stronger conclusion that we deduce from it. Last, we show that disproving certain exponential-time hypotheses requires proving breakthrough circuit lower bounds. In particular, if CircuitSAT for circuits over n bits of size poly(n) can be solved by probabilistic algorithms in time 2 n /polylog(n) , then ℬ𝒫ℰ does not have circuits of quasilinear size.
Read full abstract