The present study aimed to determine the effects of cigarette smoke on the regulation of hepatic cytochrome P450 (CYP) and glutathione S-transferase (GST) enzymes in male BALB/c mice exposed to nose-only cigarette smoke for 4 days. There were no significant increases in serum liver injury markers (alanine aminotransferase and aspartate aminotransferase) or oxidative stress (total antioxidant capacity, malondialdehyde, and glutathione disulfide/reduced glutathione) following cigarette smoke exposure, but malondialdehyde was elevated in the bronchoalveolar lavage fluid of smoke-exposed mice. Additionally, the hepatic microsomal protein levels of Cyp1a and Cyp2b, and the activities of ethoxyresorufin O-deethylase, pentoxyresorufin O-depenylase, and chlorzoxazone 6-hydrxylase, were elevated in smoke-exposed mice. Interestingly, the hepatic activities of GST toward 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, and ethacrynic acid, but not cumene hydroperoxide were enhanced by cigarette smoke exposure, which was consistent with the increased expression levels of mu- and pi-class GSTs, but not alpha-class GSTs, observed in immunoblot analyses. These findings indicate that the short-term inhalation of cigarette smoke induces drug-metabolizing enzymes such as CYP1A, CYP2B, and mu/pi-class GSTs in the absence of hepatic injury and oxidative stress. Furthermore, smoking may alter hepatic drug metabolism, as well as the disposition and toxicity of xenobiotics, including some therapeutic drugs and cigarette smoke constituents.
Read full abstract