Dystonia, characterized by repetitive twisting movements or abnormal postures, has been linked to the deep cerebellar nuclei (DCN). However, the specific roles of distinct neuronal populations within the DCN in driving dystonic behaviors remain unclear. This study explores the contributions of three distinct groups of DCN neurons in an animal model of paroxysmal dystonia harboring a mutation in the proline-rich transmembrane protein 2 (Prrt2) gene. We observed sustained calcium activity elevation across glutamatergic, glycinergic, and GABAergic inferior olive (IO)-projecting neurons within the DCN during episodes of dystonia in Prrt2-mutant mice. However, only the optogenetic activation of DCN glutamatergic neurons, but not glycinergic or GABAergic IO-projecting neurons, elicited dystonia-like behaviors in normal mice. Selective ablation of DCN glutamatergic neurons effectively eliminated aberrant cerebellar DCN outputs and alleviated dystonia attacks in both Prrt2-associated and kainic acid-induced dystonia mouse models. Collectively, our findings highlight the pivotal role of aberrant activation of DCN glutamatergic neurons in the neuropathological mechanisms underlying cerebellar-originated dystonia.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
26111 Articles
Published in last 50 years
Articles published on Normal Mice
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
27033 Search results
Sort by Recency