As a novel optical element, metalens possess immense potential in the field of optical imaging. However, the development of full-space metalens, particularly those capable of manipulating normal and oblique incidence waves, remains challenging. By embedding 1D photonic crystal into a bilayer nanostructure, we proposed a full-space and wide field-of-view (FOV) metalens, which can independently manipulate reflected and transmitted waves in near-infrared (NIR) band. Simulation results demonstrate that our metalens can achieve good focusing effects in both the reflective and transmissive spaces at two different wavelengths under normal incidence. In addition, the metalens can still operate and maintain a good focusing effect at a wavelength of 1245 nm with an oblique incidence angle of −40° to 40°, at a wavelength of 1515 nm with an oblique incidence angle of −30° to 30°. Our work broadens the degree of freedom, establishes a connection between metasurfaces and photonic crystal, and provides an effective method for designing multifunctional meta-device, thereby demonstrating a huge applications potential in virtual reality (VR), augmented reality (AR) and other related fields.
Read full abstract