In this paper it is suggested to generalize our understanding of general (structural) proof theory and to consider it as a general theory of two kinds of derivations, namely proofs and dual proofs. The proposal is substantiated by (i) considerations on assertion, denial, and bi-lateralism, (ii) remarks on compositionality in proof-theoretic semantics, and (iii) comments on falsification and co-implication. The main formal result of the paper is a normal form theorem for the natural deduction proof system N2Int of the bi-intuitionistic logic 2Int. The proof makes use of the faithful embedding of 2Int into intuitionistic logic with respect to validity and shows that conversions of dual proofs can be sidestepped.
Read full abstract