This paper explores the adaptive finite-time neural control issue for nonlinear systems with input dead zone and output hysteresis in nonstrict-feedback form. The unknown functions are estimated by employing the radial basis function neural networks (RBFNN) approach. A systematic adaptive finite-time control method is introduced using the backstepping technique and neural network approximation properties. The stability of the system is also examined by using semi-global practical finite-time stability theory. The established control approach guarantees the boundedness of all signals within the closed-loop system, enabling the system output to accurately follow the desired signal within a finite time framework while maintaining a small and bounded tracking error. Finally, simulation results are shown to demonstrate the efficacy of the suggested strategy.
Read full abstract