LetΩ⊂ℝnbe a nonsmooth convex domain and letfbe a distribution in the atomic Hardy spaceHatp(Ω); we study the Schrödinger equations-div(A∇u)+Vu=finΩwith the singular potentialVand the nonsmooth coefficient matrixA. We will show the existence of the Green function and establish theLpintegrability of the second-order derivative of the solution to the Schrödinger equation onΩwith the Dirichlet boundary condition forn/(n+1)<p≤2. Some fundamental pointwise estimates for the Green function are also given.
Read full abstract