A nonlinear discrete switching host-parasitoid model with Holling type II functional response function, in which the switch is guided by an economic threshold (ET), is proposed. Thus, if the weighted density of two generations of the host population increases and exceeds the ET, then integrated pest management (IPM) measures are enacted, i.e., biological and chemical measures are implemented together, assuming that the chemical immediately precedes the biological inputs to avoid pesticide-induced deaths of the natural enemies. First, the existence and local stability of the equilibria of two subsystems were studied, and the existence and coexistence of several types of equilibria of a nonlinear switching system were analysed. Next, the nonlinear switching system was investigated by numerical simulation, showing that the system exhibits quite complex dynamic behaviour. A two-dimensional bifurcation diagram revealed the existence and coexistence regions of different types of equilibria including regular and virtual equilibria. Moreover, period-adding bifurcations in two-dimensional parameter spaces were found. One-dimensional bifurcation diagrams revealed that the system has periodic, quasiperiodic, and chaotic solutions, Neimark–Sacker bifurcation, multiple coexisting attractors, period-doubling bifurcations, period-halving bifurcations, and so on. Finally, the initial densities of hosts and parasitoids associated with host outbreaks and their biological implications are discussed.
Read full abstract