In this paper, by Darboux transformation and symbolic computation we investigate the coupled cubic–quintic nonlinear Schrodinger equations with variable coefficients, which come from twin-core nonlinear optical fibers and waveguides, describing the effects of quintic nonlinearity on the ultrashort optical pulse propagation in the non-Kerr media. Lax pair of the equations is obtained, and the corresponding Darboux transformation is constructed. One-soliton solutions are derived; some physical quantities such as the amplitude, velocity, width, initial phases, and energy are, respectively, analyzed; and finally an infinite number of conservation laws are also derived. These results might be of some value for the ultrashort optical pulse propagation in the non-Kerr media.
Read full abstract