In this paper, asynchronous complex histogram (ACH)-based multi-task artificial neural networks (MT-ANNs), are proposed to realize modulation format identification (MFI), optical signal-to-noise ratio (OSNR) estimation and fiber nonlinear (NL) noise power estimation simultaneously for coherent optical communication. Optical performance monitoring (OPM) is demonstrated with polarization mode multiplexing (PDM), 16 quadrature amplitude modulation (QAM), PDM-32QAM, as well as PDM-star 16QAM (S-16QAM) for the first time. The range of launched power is −3 to −2 dBm with a fiber link of 160–1600 km. Then, the accuracy of MFI reaches 100%. The average root mean square error (RMSE) of OSNR estimation can reach 0.37 dB. The average RMSE of NL noise power estimation can reach 0.25 dB. The results show that the monitoring scheme is robust to the increase of fiber length, and the solution can monitor more optical network parameters with better performance and fewer training data, simultaneously. The proposed ACH MT-ANN has certain reference significance for the future long-haul coherent OPM system.
Read full abstract