PurposeAutonomous underwater vehicle (AUV) is widely used in resource prospection and underwater detection due to its excellent performance. This study considers input saturation, nonlinear model uncertainties and external ocean current disturbances. The containment errors can be limited to a small neighborhood of zero in finite time by employing control strategy. The control strategy can keep errors within a certain range between the trajectory followed by AUVs and their intended targets. This can mitigate the issues of collisions and disruptions in communication which may arise from AUVs being in close proximity or excessively distant from each other.Design/methodology/approachThe tracking errors are constrained. Based on the directed communication topology, a cooperative formation control algorithm for multi-AUV systems with constrained errors is designed. By using the saturation function, state observers are designed to estimate the AUV’s velocity in six degrees of freedom. A new virtual control algorithm is designed through combining backstepping technique and the tan-type barrier Lyapunov function. Neural networks are used to estimate and compensate for the nonlinear model uncertainties and external ocean current disturbances. A neural network adaptive law is designed.FindingsThe containment errors can be limited to a small neighborhood of zero in finite time so that follower AUVs can arrive at the convex hull consisting of leader AUVs within finite time. The validity of the results is indicated by simulations.Originality/valueThe state observers are designed to approximate the speed of the AUV and improve the accuracy of the control method. The anti-saturation function and neural network adaptive law are designed to deal with input saturation and general disturbances, respectively. It can ensure the safety and reliability of the multiple AUV systems.
Read full abstract