The stability of a long-periodic homogeneous spin-spiral configuration in an inverse tetragonal Heusler compound, Mn2PtSn, is studied with the help of density functional theory calculations. The energetically most stable collinear magnetic state in this system is the ferrimagnetic one. However, the existence of negative phonon frequency makes this configuration dynamically unstable. The energy dispersion plots reveal that an energy minimum exists at q=0.1 along [100] and [110] propagating directions, which correspond to a stable non-collinear configuration compared to the collinear spin states. The inclusion of spin–orbit coupling further reduces the ground-state energy without changing the q-vector of the energy minima. The cycloidal spiral configuration, where the spins rotate at an angle of 36° along the propagating direction, is found to be more stable than the screw spiral configuration. The calculated density of state plots further supports the stability of the non-collinear cycloidal spin order. This stable, non-collinear spin-spiral configuration of Mn2PtSn makes this compound a prospective material for spintronics device applications.
Read full abstract