Nonadiabatic dynamics, which goes beyond the Born-Oppenheimer approximation, has increasingly been shown to play an important role in chemical processes, particularly those involving electronically excited states. Understanding multistate dynamics requires rigorous quantum characterization of both electronic and nuclear motion. However, such first principles treatments of multi-dimensional systems have so far been rather limited due to the lack of accurate coupled potential energy surfaces and difficulties associated with quantum dynamics. In this Perspective, we review recent advances in developing high-fidelity analytical diabatic potential energy matrices for quantum dynamical investigations of polyatomic uni- and bi-molecular nonadiabatic processes, by machine learning of high-level ab initio data. Special attention is paid to methods of diabatization, high fidelity construction of multi-state coupled potential energy surfaces and property surfaces, as well as quantum mechanical characterization of nonadiabatic nuclear dynamics. To illustrate the tremendous progress made by these new developments, several examples are discussed, in which direct comparison with quantum state resolved measurements led to either confirmation of the observation or sometimes reinterpretation of the experimental data. The insights gained in these prototypical systems greatly advance our understanding of nonadiabatic dynamics in chemical systems.
Read full abstract