Behavioural time scale plasticity (BTSP) is non-Hebbian plasticity induced by integrating presynaptic and postsynaptic components separated by a behaviourally relevant time scale (seconds)1. BTSP in hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms that enable synapse-specific plasticity on a behavioural time scale are unknown. Here we show that BTSP can be induced in a single dendritic spine using two-photon glutamate uncaging paired with postsynaptic current injection temporally separated by a behavioural time scale. Using an improved Ca2+/calmodulin-dependent kinase II (CaMKII) sensor, we did not detect CaMKII activation during this BTSP induction. Instead, we observed dendritic, delayed and stochastic CaMKII activation (DDSC) associated with Ca2+ influx and plateau potentials 10–100 s after BTSP induction. DDSC required both presynaptic and postsynaptic activity, which suggests that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 15–30 s after the BTSP protocol inhibited synaptic potentiation, which indicated that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca2+ release facilitated both DDSC and BTSP. Thus, our study suggests that non-synapse-specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.
Read full abstract