Interactions among and between electrons and phonons steer the energy flow in photo-excited materials and govern the emergence of correlated phases. The strength of electron–phonon interactions, decay channels of strongly coupled modes and the evolution of three-dimensional order are revealed by electron or X-ray pulses tracking non-equilibrium structural dynamics. Despite such capabilities, the growing relevance of inherently anisotropic two-dimensional materials and functional heterostructures still calls for techniques with monolayer sensitivity and, specifically, access to out-of-plane phonon polarizations. Here, we resolve non-equilibrium phonon dynamics and quantify the excitonic contribution to the structural order parameter in 1T-TiSe2. To this end, we introduce ultrafast low-energy electron diffuse scattering and trace strongly momentum- and fluence-dependent phonon populations. Mediated by phonon–phonon scattering, a few-picosecond build-up near the zone boundary precedes a far slower generation of zone-centre acoustic modes. These weakly coupled phonons are shown to substantially delay overall equilibration in layered materials. Moreover, we record the surface structural response to a quench of the material’s widely investigated exciton condensate, identifying an approximate 30:70 ratio of excitonic versus Peierls contributions to the total lattice distortion in the charge density wave phase. The surface-sensitive approach complements the ultrafast structural toolbox and may further elucidate the impact of phonon scattering in numerous other phenomena within two-dimensional materials, such as the formation of interlayer excitons in twisted bilayers.
Read full abstract