We consider the graph Γ(G), associated with the conjugacy classes of a group G. Its vertices are the nontrivial conjugacy classes of G, and we join two different classes C, D, whenever there exist x ∈ G and y ∈ D such that xy = yx. The aim of this article is twofold. First, we investigate which graphs can occur in various contexts and second, given a graph Γ(G) associated with G, we investigate the possible structure of G. We proved that if G is a periodic solvable group, then Γ(G) has at most two components, each of diameter at most 9. If G is any locally finite group, then Γ(G) has at most 6 components, each of diameter at most 19. Finally, we investigated periodic groups G with Γ(G) satisfying one of the following properties: (i) no edges exist between noncentral conjugacy classes, and (ii) no edges exist between infinite conjugacy classes. In particular, we showed that the only nonabelian groups satisfying (i) are the three finite groups of order 6 and 8.
Read full abstract