Blood has been considered as a simplified tissue model, both physiologically and physically consisting in two compartments, extra-cellular and intra-cellular. In the physiologic condition (300 mOsm), the relaxation rates of red cell suspensions in saline increased linearly with the hematocrit in the range 0-0.80 according to Fullerton's model of fast proton exchanges between the two compartments (Fullerton GD, Potter JL, Dornbluth NC. NMR relaxation of protons in tissues and other macromolecular water solutions. Magn Reson Imaging 1982; 1:209-228). In experiments of osmotic variations, between 200 and 900 mOsm at three constant red cell numbers in the samples, non-linear variations of relaxation rates with red cell volume were observed. In the hyperosmotic domain, the particularly high increase in blood transverse relaxation rate with the decreasing cell volume has been attributed to the progressive water-protein organization in the cellular compartment. A generalised form of the fast exchange model has been applied to extended experimental conditions of red cells, by introducing the red cell volume ratio of modified to iso-osmotic values, and the volume fraction of iso-osmotic red cells.
Read full abstract