The ability of trees to acquire soil nutrients under future climate conditions will influence forest composition and function in a warmer world. Rarely are multiple belowground carbon allocation pathways measured simultaneously in large global change experiments, restricting our understanding of how trees may shift their allocation of resources to different nutrient acquisition mechanisms under future climates. Leveraging a 20-year soil warming experiment, we show that ectomycorrhizal (EM) trees reduce mycorrhizal colonization and root exudation while increasing fine root biomass, while arbuscular mycorrhizal (AM) trees largely maintained their belowground carbon allocation patterns in warmer soils. We suggest that AM trees may be better adapted to thrive under global warming due to higher rates of nitrogen mineralization in warmer soils and the ability of their mycorrhizal symbiont to acquire mineralized inorganic nutrients, whereas EM trees may need to alter their belowground carbon allocation patterns to remain competitive as global temperatures rise.
Read full abstract