The development of efficient and cost-effective electrocatalysts to overcome the intrinsic sluggish kinetics of the oxygen reduction reaction (ORR) in zinc-air batteries is crucial. In this study, we introduce a strategy that integrates a template-assisted synthesis with subsequent thermal treatment to fabricate an active and stable cobalt-based nitrogen-doped carbon electrocatalyst, denoted as Co-N-CNT. The strategy adjusts the disordered architecture of the zeolitic imidazolate framework (ZIF) through the synergistic effect of bimetallic species, restricted the growth of zeolitic imidazolate framework nanoleaves (ZIF-L) using salt templates, and directed the transformation from a two-dimensional blade-like morphology to a three-dimensional multi-tiered composite structure. Notably, the Co-N-CNT-800 sample, synthesized at an optimized pyrolysis temperature of 800 °C, exhibits a half-wave potential of 0.89 V and demonstrates stability with sustained cycling over 21 h, which is comparable to the performance of commercial Pt/C electrocatalysts. Moreover, when employed as the cathode in zinc-air batteries, Co-N-CNT-800 not only surpasses Pt/C in terms of power density but also exhibits long-term charge/discharge stability. This findings offer a viable pathway for the design of active and cost-effective ORR electrocatalysts, holding promise for applications in the electrochemical energy storage and conversion systems.
Read full abstract